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Abstract

Human analogical ability involves the re-use of abstract, struc-
tured representations within and across domains. Here, we
present a generative neural network that completes analogies
in a 1D metric space, without explicit training on analogy.
Our model integrates two key ideas. First, it operates over
representations inspired by properties of the mammalian En-
torhinal Cortex (EC), believed to extract low-dimensional rep-
resentations of the environment from the transition probabil-
ities between states. Second, we show that a neural network
equipped with a simple predictive objective and highly general
inductive bias can learn to utilize these EC-like codes to com-
pute explicit, abstract relations between pairs of objects. The
proposed inductive bias favors a latent code that consists of
anti-correlated representations. The relational representations
learned by the model can then be used to complete analogies
involving the signed distance between novel input pairs (1:3
:: 5:? (7)), and extrapolate outside of the network’s training
domain. As a proof of principle, we extend the same architec-
ture to more richly structured tree representations. We suggest
that this combination of predictive, error-driven learning and
simple inductive biases offers promise for deriving and utiliz-
ing the representations necessary for high-level cognitive func-
tions, such as analogy.

Keywords: abstract structured representations; analogy; neu-
ral networks; predictive learning; relational reasoning;

Introduction
Analogy requires the flexible, yet orderly, transfer of ab-
stract knowledge within and between domains. Although this
transfer occasionally enables new theoretical insights (e.g.,
Rutherford’s planetary model of atomic structure or the hy-
draulic model of blood circulation (Gentner, 1983)), it also
provides critical support for basic cognitive functions, such
as memory retrieval, categorization, and schema induction
(Gick & Holyoak, 1983; Doumas, Hummel, & Sandhofer,
2008; Gentner & Forbus, 2011; Holyoak, 2012). Here, we
test the idea that representations of abstract, structural rela-
tionships can be derived using simple forms of training. We
evaluate whether these representations can, in turn, support
higher-level functions such as analogical inference, without
any explicit training on analogy itself.

Specifically, we test the idea that abstract, structured rep-
resentations arise from learning systems that (a) exploit the
vast amounts of observational data available to natural agents
((Rao & Ballard, 1999), O’Reilly, Wyatte, and Rohrlich,
2017) coupled with (b) particular inductive biases in the
learning algorithm and network architecture.

We explore what particular input representations and
model architectures enable the extraction and utilization of
this relational knowledge. To do so, we focus on model-
ing signed distance relations in a 1-dimensional (1D) domain
(e.g., analogies such as 1:3 :: 5:7), and conclude by extend-
ing the principles to analogies involving a simple family tree
structure.

Throughout, we take inspiration from the representational
properties of the mammalian Entorhinal Cortex (EC), be-
lieved to extract low-dimensional representations of the met-
ric structure common across environments from the transi-
tion probabilities between states (Dayan, 1993; Gustafson &
Daw, 2011; Stachenfeld, Botvinick, & Gershman, 2017). We
then propose a learning procedure that combines error-driven
learning and an inductive bias that naturally extracts explicit
relational representations from pre-structured, EC-like repre-
sentations of the current domain. We show that this combina-
tion of representation and model architecture can support ana-
logical inference, and extrapolate well outside the network’s
training domain.

Methods
Input Representations We focus first on the 1D domain.
What input representations enable relation learning that can
support analogy (e.g., Figure 1A)? Here, we compare place
codes, a successor representation (SR) of states, and lower di-
mensional representations generated by eigendecompositions
of this SR matrix, truncated to 10, 5, or 2 components.

For the place code representation, locations are represented
as 1xN one-hot vectors, each orthogonal to the others. This
set of representations forms an nXn identity matrix (see Fig-
ure 1C, upper left panel), and thus lacks intrinsic structural



information about the domain. It is therefore, a priori, a
poor candidate for discovering relational structure that could
support analogy, which requires knowledge about structural
equivalences (e.g., that the difference between 1-3 is the same
as 5-7).

Figure 1: Schematic representation of the 1D domain. (A)
depicts the task the network will perform: a signed distance
analogy in 1D (here, 5:3 :: 8:?). (B). Following Stachen-
feld et al. (2017), we use a random-walk transition matrix
to compute the Successor Representation (SR), and derive a
low-dimensional representation of the domain by computing
the eigendecomposition of the SR. (C) The three forms of
representations are compared as inputs to the network: place
codes, the SR, and various number of eigenvectors of the SR.

We therefore extend the representation to carry informa-
tion about the similarity structure of the dimension. To do
so, we use the successor representation (SR) (Dayan, 1993).
The SR is a predictive representation of possible future states,
and thus carries information about the dimension’s intrinsic
structure. To illustrate, imagine, an animal navigating a linear
track, with equal probability of moving to spatially adjacent
states at successive time points (See Figure 1B). Experience
along the track allows learning state-state transition probabil-
ities. The SR encodes the likelihood of visiting a particular
location si, given a trajectory initiated in a particular state s.
The resulting nXn SR matrix is a collection of these condi-
tional probabilities (See Figure 1C, upper right panel). The
probability of visitation is high for neighboring states, but
low for distant states. Although the SR has primarily been
used in learning spatial structure, we take this approach to be
representative of continuous dimensions, more broadly (e.g.,
brightness, loudness, pitch, etc., as well as semantic dimen-
sions such as animacy, size, or agreeableness). The SR can
be acquired using a temporal difference learning algorithm
(Dayan, 1993). Here, however, we simply stipulate a transi-
tion matrix with equal probability of transitioning to adjacent
states and a discounted value of future states of 0.9 (results
are robust to this parameter). For the SR, the resulting input
representation is an nXn matrix in which nearby states have
similar representations.

Representing this similarity structure makes the SR a bet-
ter candidate for analogical inference than a pure place code.
However, it is still a high-dimensional representation that

does not compactly encode variation along the dimension of
interest. Critically, recent work has shown that a spectral rep-
resentation of the SR provides an abstract, implicitly struc-
tured representation of the domain (Stachenfeld et al., 2017).
Intriguingly, this spectral representation of the SR resem-
bles the representational properties of grid-like cells in me-
dial entorhinal cortex. Entorhinal cortex (EC) is believed to
encode low-dimensional representations of the metric struc-
ture of the environment (Hafting et al., 2005; Gustafson and
Daw, 2011; Stachenfeld et al., 2017). Here, we take grid-
cells in EC to reflect a more general idea: the decomposi-
tion of transition probabilities into low-dimensional embed-
dings provides an abstract, implicitly structured representa-
tion of a domain. When domains share an underlying tran-
sition structure, these representations can be used to support
analogies. To implement our 1D case, we follow Stachen-
feld et al. (2017) and compute the eigendecomposition of the
square (nXn) SR matrix. The eigenvalues (λ) are obtained
solving det(M−λI) = 0, where M is the SR matrix, and I the
identity matrix. We can obtain the corresponding eigenvector
(Ui) for a particular eigenvalue (λ i) by solving MUi = Uiλi
for Ui. Finally, we encode each location in the native space
using its eigencoordinates (Uλ) (Figure 1C, lower left panel).
We compare models trained on the top 10, top 5, top 2 highest
eigenvalue eigenvectors (e.g., Figure 1C, lower right panel),
and the neural network learns over these eigencoordinate rep-
resentations, which implicitly encode the ordering and neigh-
borhood relations among the locations. Finally, we include
a scrambled version of the top 2 eigenvectors. This scram-
bled version removes the true similarity structure in the na-
tive space, and serves as a control to ensure that the neural
network is not simply memorizing its inputs.

Model Architectures. We trained and tested networks on
each of the input representations described above. Each net-
work was constructed to take a pair of inputs (A and B — we
refer to objects and relations, themselves, using non-italicized
capitalized letters, and a model’s representations of them us-
ing italicized lower-case (e.g., a and b)), and trained to pre-
dict each member of the pair from the other. We evaluated
five competing model architectures, that we describe in de-
tail below. In all models, representations of A converge on a
common learned internal layer, which can then encode their
relationship R. The ability to form a systematic, abstract re-
lational encoding (r) is a primary focus of this paper. We
evaluate the ability of r to support simple metric analogies by
completing problems of the form A:B as C:? (e.g., 1:3 is to
5:?, answer: 7).

r is computed as,

r = fΘ(a,b)

where a and b are representations of the two input objects
to be related, and Θ are the learned encoder parameters (by
default, a one layer multiple layer perceptron (MLP) with 100
rectified linear units (RELU)) and (r) is the activation state
across two linear nodes.



To train the model, the latent state r is composed with the
object A representation (a) to predict B (b̂), and composed
with the object B representation (b) to predict A (â).

â = gΦ (r,b) b̂ = gΦ (r,a)

where, â is the predicted version of a, g is the decoder func-
tion (a one layer MLP with 100 RELU units), with learned
parameters Φ. r is r = fΘ(a,b), as above, and b is the input
representation of object B. Likewise for b̂, mutatis mutandis.

The representations r , a , and b are thus arguments to func-
tions parameterized by the encoder and decoder. Here, we
control the selection and application of these arguments by
hand, but not their values, therein focusing on the problem of
representation learning.

Intuitively, the objective of the model is to learn a repre-
sentation that enables transformation of the representation a
to match representation b, and vice versa. The loss is the
mean squared error of the reconstruction across both objects,
and weights of the encoder (Θ) and decoder (Φ) are jointly
updated using standard backpropagation (Rumelhart, Hinton,
& Williams, 1985). We emphasize that the network is trained
to minimize reconstruction error ((a− â)2 +(b− b̂)2), not to
complete analogies.

Model architectures are shown in Figure 2. All 5 models
consist of two linear nodes in the latent space (r), but differ
in how they constrain the nodes in r to be used. For models 1
and 2, the same 2D vector of r is used in both â= gΦ (r,b) and
b̂ = gΦ (r,a). Model 2 differs from Model 1 only in allowing
separate decoder parameters to be learned for â = gΦa (r,b)
and b̂ = gΦb (r,a). These models are free to learn how to use
these nodes (r) to predict across a and b. By contrast, models
3, 4, and 5 specifically commit each of these two nodes to
separately predicting a and b, which we refer to as ra and
rb, respectively. That is, â = gΦ (ra,b), and b̂ = gΦ (rb,a).
Models 3, 4, and 5 all share decoder parameters across â. and
b̂.

Models 4 and 5 involve chaining the two latent nodes in
r (ra and rb), such that one of the components of the rela-
tional representation is a function of the other. The motiva-
tion for this chaining of latent nodes is as follows. Recall that
activation in ra encodes information necessary to transform
b to a when passed through the decoder, and vice versa for
rb. Although the input representation may contain implicit
information about the relationship between A and B, the en-
coder must extract this information and explicitly represent
relational information in a low-dimensional form. Logically,
in a metric space, how A relates to B cannot change without
affecting how B relates to A – the two predictive tasks im-
posed on network. The chain weights in models 4 and 5 force
such a bi-directional dependence in r (See Figure 2). While it
is possible that an unconstrained neural network could learn
the dependence between ra and rb, we find that, using the cur-
rent objective, this does not occur reliably without imposing
the constraint that ra = fΘ (a,b), and rb = raW +bias.

Model 4 imposes the weakest version of this constraint, by
allowing the weight W (that links ra and rb) to be randomly

initialized. However, randomly initializing the chain weight
fails to exploit all the world-structure that may be easily in-
corporated. Critically, the general relation between the com-
ponents ra and rb should be anti-correlated (e.g., the “bigger”
A is than B, the ”smaller” B is than A). That is, ra, rb can be
thought of as conjugate pairs (e.g., +-2). A prior that biases
the network toward the discovery of this relational structure
can easily be implemented by initializing W to -1. We refer to
this architecture as the conjugate symmetry prior, as it favors
extracting a representation in r that treats ra and rb as a con-
jugate pair, reflected about zero. Note that this was strictly
an initialization, and that W was free to vary over training.
Empirically, we find that it tends not to vary over the course
of training when initialized to -1.

Analogy Evaluation. We address whether the trained net-
works can perform analogy as follows. First, two object rep-
resentations (a and b) are passed to the network, and the re-
sulting latent state (r) is computed, and manually clamped to
use for analogical completion. Next, a third object represen-
tation (c) is passed directly to the decoder without modifying
r. The decoder then generates the expected d (d̂), given c
and the latent state r that was previously computed from the
ab pair, as d̂ = gΦ (r,c). To quantify a network’s analogical
ability, we compute the cosine similarity between d̂ and d, as
well as the cosine similarity between d and three randomly
chosen foils. If the correct mapping is more similar than all
three incorrect mappings, the network is determined to have
succeeded on that trial. Chance performance on this metric is
thus 25%.

Our primary results involve a 1x80 space (Figure 3). We
also explore 1x20, 1x40, and 1x160 spaces, and the ability to
generalize between them (Figure 5). In all cases, we trained
the model on 500 ab pairs from the same space, and held 100
unique pairs from that space out of training for model testing.
The number of possible pairs varies by the size of the native
space. For example, in the smallest space (1x20), there are
380 possible ab pairs, entailing that some were necessarily
repeated in training. At the other extreme (1x160), there are
25,540 possible pairs, and only 500 were selected for train-
ing, meaning that the network only experienced 2% of the
possible space of relation-tokens. We trained the network us-
ing batch sizes of 64 samples and the ADAM optimizer (with
a constant learning rate of 3x10−4), implemented in Tensor-
flow. We trained all networks for a fixed number of 1000
batches. This was sufficient to observe reliable asymptotes
in training loss. Unless otherwise indicated, we ran 50 repli-
cations of each network with random encoder and decoder
weights and random samples from the training set, and plot
the mean and 95% CI for each class of networks and input
representations.

Results
Analogy Results Across Input Representations and Archi-
tectures. In the models explored here, we find that success
on these analogies requires both a particular input representa-



Figure 2: Schematic of model architectures. In each model, the encoder infers the relation r between a and b. The decoder
predicts a given b and r, and predicts b given a and r. Gray boxes indicate activity vectors (inputs, outputs, or hidden states).
Colored boxes indicate parameterized functions (linear layers or multilayer neural networks); boxes with the same name and
color indicate shared parameters.

Figure 3: Analogy results for different model architectures. We see that only Model 5 (conjugate symmetry prior) trained on a
low dimensional eigenrepresentation (e.g., 2 and 5) reliably learns relations enabling analogical completion.

tion and a particular architecture (See Figure 3.) Only models
that integrate a low-dimensional eigenrepresentation of the
SR (such as the top 2 or top 5 eigenvectors), and learn over
this representation using a conjugate symmetry prior on the
relational representation (Model 5) reliably complete analo-
gies involving novel tokens (e.g., 1:3 :: 5: ? (7)). In the
1x80 space, this combination of architecture and top-2 eigen-
vectors averaged analogical performance of 90.5% across 50
iterations, well above a priori chance levels of 25%. Place
codes, the full SR matrix, and scrambled eigenvectors never
extracted relational representations that support analogical
completion, regardless of architecture. Likewise, Models 1-4
did not reliably extract the appropriate relational structure, re-
gardless of the input representation employed (i.e., even when
the input representation was the top 2 or 5 eigenvectors).

Why is this particular combination of input representations
and architectural biases important? The highest-eigenvalue

eigenvectors carry implicit structural information about the
dimension. In this 1D space, the 2nd eigenvector (Fiedler
vector) here monotonically increases over the range of the
domain, and is thus the closest approximation to a linear rep-
resentation of the native space in the set of eigenvectors. (See
Figure 1). In learning over these representations, Model 5
biases the network to represent the explicit bidirectional re-
lation between a and b using anti-correlated conjugate pairs,
reflecting the structure of the components of the relational
representation (See Figure 4). This bias appears necessary
for backpropagation to reliably learn suitable encoder and de-
coder parameters to support analogy, when using the transfor-
mational objective we employ, here (i.e., â = gΦ (Ra,b), and
b̂ = gΦ (Rb,a)).

Figure 4 shows the latent representations in the two nodes
of r for single, randomly chosen runs of all 5 models when
trained on the top-2 eigenvectors. For Models 3-5, these



two nodes are functionally restricted, corresponding to ra and
rb. Notably, we see that in Model 5, the latent activations
(ra,rb) approximate anti-correlated linear representation of
the signed distance. Moreover, for a given signed distance,
ra and rb are in conjugate symmetric states (0+ ra,0− rb),
reflected about the X axis. Note also that many different A,B
pairs will produce the same signed distance. For example, 10-
5, 23-18, and 76-71, would all be at the same position along
the X axis in Figure 4, given that they are all equal in signed
distance. Only Model 5, with the conjugate symmetry prior,
extracts similar representations in r, encoding the abstract re-
lational structure as stationary over the range of inputs.

It is worth noting how this relates to the parallelogram
model (Rumelhart & Abrahamson, 1973), which captures the
abstract logic of linear analogies in vector space. The par-
allelogram model completes the analogy using fixed vector
addition and subtraction operations D = (B-A) +C. We note
that we do not see our model as standing in competition with
an algorithmic parallelogram computation, a la (Rumelhart &
Abrahamson, 1973). Instead, the focus of our model as de-
riving useful representations from experience, using only ob-
servation and standard gradient-based learning, coupled with
particular inductive biases. Our model can be thought of
as learning an encoding from the input (canonical) space to
a latent space in which a linear parallelogram-like compu-
tation (B-A+C, (Rumelhart & Abrahamson, 1973; Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013)) of the analogy can
be performed. Here, we use the conjugate symmetry prior on
the chained weight connection to encourage ra to encode the
trajectory from b to a, and rb to encode the reverse trajectory
from a to b.

Generalization across 1D native spaces of various size.
Here, we show that the extraction of relational information
not only allows the network to complete analogies within the
domain over which it has been trained, but also to general-
ize out of the domain of its support (i.e., pure extrapolation).
To do so, we train the network on one range of magnitudes
(1x20,1x40, 1x80, or 1x160), and test its analogical perfor-
mance on magnitudes outside of that range (see Figure 5).
For example, one network is trained on inputs that differ in
magnitude between 1 and 20 units (1x20 space), and then
tested on inputs that differ by different ranges of magnitudes
(e.g., 1x40, 1x80, 1x160). We repeat this procedure by train-
ing on all four ranges, and testing on the others. Note that
these different ranges have the same underlying, local transi-
tion structure (See Figure 1), but different numbers of states.
In all cases, the network can generate analogies in ranges of
magnitudes that are beyond the scope of training without fur-
ther weight updates, including extrapolating from learning in
the 1x20 range and testing in 1x160. Thus, given the assump-
tion of suitable procedures for re-computing and normaliz-
ing the eigendecomposition in novel domains, this algorithm
can naturally generalize to similarly structured environments
without retraining.

Extracting and utilizing tree structured representa-

tions. Thus far, we have focused on analogy in 1D linear
spaces. However, it is clear that human reasoning also ex-
ploits other forms of relational structure present in the envi-
ronment (e.g., (Kemp & Tenenbaum, 2008)), such as trees,
rings, and radial geometries. To explore whether the model
presented above can be extended to learn, and make use of
other, non-linear structure in generalization and analogical in-
ference, we apply it to a simple hierarchical graph.

Specifically we use a tree composed of two identically
structured “families” with connected root nodes (See Figure
6). Both families have 4 generations (levels), with equiva-
lent number of individuals per generation. Edges in the graph
exist only between parents and children (results are similar
when edges between siblings are included). To generate the
transition matrix, we assume that the probability of moving
from one node to another is 1/node degree, and compute the
eigendecomposition over this random-walk transition matrix.
Based on the results of the 1D case, we use the top 2 eigen-
vectors, and compare the performance of Models 1 (standard)
and Model 5 (conjugate symmetry prior), including a version
of Model 5 with scrambled eigenvectors.

For this tree, the top 2 eigenvectors are highly struc-
tured and interpretable (See Figure 6): the highest eigenvalue
eigenvector carries information about family identity, and the
second highest-eigenvalue eigenvector about generation, in-
variant to family. We imposed two further constraints on the
analogy test used for the 1D space. First, (a,b) training pairs
were constrained to come from the same family. Second, the
siblings of the target node were prevented from being foils
(though, of course, other close relatives such as cousins, par-
ents, or children could be included as foils). Notably, we
again see that Model 5, with a conjugate symmetry prior,
learning over the top-2 eigenrepresentations is able to suc-
cessfully complete the multiple choice analogy tasks, despite
no experience with the particular (a,b) pairs, and no direct
training on analogy. See Figure 6. Although this particular
tree structure is a simplification of more complex structures
observed in the world, our results suggest that the model can
be applied usefully to more complex structures than the sim-
ple linear 1D metric focused on above.

Discussion
Here, we considered the possibility that abstract relation
learning can derive from the combination of (a) error-driven
learning using the vast amounts of perceptually observational
data available ((Rao & Ballard, 1999; O’Reilly, Wyatte, &
Rohrlich, 2017), with (b) particular inductive biases in the
learning algorithm and network architecture. We compared a
variety of input representations and model architectures, test-
ing their ability to extract relational information and use that
to complete novel analogies in simple 1D and tree structure
domains, without explicit training on analogy. We found that
two properties of the models are critical for exhibiting this
ability. First, the inputs to the model must be mapped into
a canonical representational space that carries implicit struc-



Figure 4: Latent node activations for two nodes as a function of signed distance when trained on top-2 eigenvectors. Only
Model 5 (conjugate symmetry prior) learns representations that reliably track the ground truth signed distance. Note that
different input pairs produce the same signed distance (e.g., 55-51, 11-7). Every possible pair was plotted here, resulting in the
visible, thin individual lines. Notably, only Model 5 reliably produces similar activations in r for different tokens of the same
signed distance. Note also that the two latent nodes are anti-correlated.

Figure 5: Analogy results when training and testing on native
spaces of different size, but the same transition structure.

tural information about the domain (i.e., ordering and neigh-
borhood relations). Learning over these low-dimensional,
structured representations (Figure 1) enables the extraction of
explicit relational representations, that can be used for anal-
ogy. Mapping to a canonical space also allows generaliza-
tion across environments of different sizes that share structure
(Figure 5).

The particular canonical representation we employ is in-
spired by the relationship between hippocampal place cells
and grid cells in medial entorhinal cortex. These grid-cells
have been suggested to reflect a decomposition of the predic-
tive map reflecting the transition structure common to spa-
tial environments (Stachenfeld, Botvinick, Gershman, 2017).
Evidence for grid-cells has been found in the human brain
beyond EC, in medial PFC, posterior cingulate, and lateral
inferior parietal cortex (Doeller et al, 2010; Jacobs et al.,
2013; Constantinescu et al., 2016), and in conceptual (non-
spatial) tasks (Constantinescu et al., 2016). We thus take grid-
cells to be one example of the abstract, structured represen-
tations that may be shared across domains and exploited for

high-level relational reasoning tasks, such as analogy. More
broadly, we suggest that similar mechanisms for extracting
low-dimensional structure may support other common repre-
sentational forms. Kemp and Tenenbaum (2008) provide a
small inventory of representational forms that recur in human
cognition (rings, chains, grids, hierarchies, trees, orders), pre-
senting a hierarchical Bayesian model that identifies the best
structural form for a dataset. Understanding how biologically
plausible predictive learning mechanisms (coupled with in-
ductive biases) may extract other representational structures
is a topic of ongoing work.

Second, we show that if a simple neural network ar-
chitecture is trained on pairwise relationships among these
dimensionally-reduced encodings, and is imbued with a sim-
ple, local inductive bias that favors the extraction of conjugate
bidirectional relationships among those pairs, it can learn rep-
resentations that allow it to carry out analogical completions,
and generalize this ability well out of the range of its training
domain. Intuitively, we can think of the network as asking:
having seen a and b, how would I transform a to make it b,
and vice versa? We combine this objective with a prior on
the relational representation that favors dedicated, but sys-
tematically anti-correlated, nodes in the latent space (ra ,rb).
These nodes may be thought of as a conjugate pair of compo-
nent relational representations that can be used to reconstruct
a(ra,b) and b(rb,a). Notably, the learned relations (or tra-
jectories) in the latent space are abstract and approximately
stationary with respect to the input domain (i.e., 1-3 = 15-
17) (See Figure 4), and can be composed with other object
representations to generate analogies.

Though these results are encouraging, they rely on a sim-
plified version of the problem that humans face in generating
analogies. One of the most notable features of human ana-
logical ability is the ability to select the relevant dimension
of variation from the indefinite number of possible relations
that might obtain. Indeed, some of the limits in applying the
parallelogram procedure (B-A +C) on semantic embeddings
as a model of human ability stem from problems handling se-



Figure 6: Extraction and utilization of structured representa-
tions for the particular tree shown in (A). (B) visualizes the
2nd and 3rd largest eigenvalue eigenvectors. Here, locations
in the tree (shown in the upper portion of B) are linked to the
points in the eigenplots (lower portion) that share color and
brightness. The 2nd EV can be seen to encode family identity
(one red, one blue), and the third encodes generation invariant
to family (varying in brightness). (C) shows analogy results
for this domain.

quencing and context-sensitivity (Chen, Peterson, & Griffiths,
2017). Here, we have pre-selected the relevant dimension for
the analogy, focusing instead on general mechanisms for ac-
quiring and utilizing these structured representations. How-
ever, a proper understanding of analogy, and human intelli-
gence more broadly, requires directly addressing the relevant
search and attentional selection problems, which we see as a
critical target for future work.
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